header
于峰

发布于:2025年07月01日 19:19 点击数:

中非经贸合作智能实验室业务骨干,湖南大学隆平农学院执行院长、生物学院教授。 Email:feng_yu@hnu.edu.cn

基本信息

1984年3月出生于湖南永州。获湖南省自然科学一等奖(序1)、卫志明青年创新奖等奖励。湖南师范大学获生物技术学士学位(2007年)、理学博士学位(2013年,导师:陈良碧、栾升教授)。加州大学伯克利分校大数据分析方向访问学者(合作导师Devin Coleman-Derr)。开展分子与智算融合的作物基础研究,揭示作物适应土壤病虫害等环境因子的系列分子机理。相关研究成果发表在Nature Plants、Development Cell、Plant Cell和Molecular Plant等本领域权威期刊。成果多次被主要发达国家院士Luis Herrera-Estrella等评价为“first”“breaking new ground”“great story”。曾任湖南大学人力资源处处长兼人才工程办公室主任与党委教师工作部部长、中国科协“青年托举人才”计划(2016);培养学生中有10余人任浙江大学、西北农林科技大学等高校教授、副教授。

教育背景

2003-2007 湖南师范大学 生物技术专业 本科
2008-2013 湖南师范大学 硕博连读生,导师:陈良碧, 栾升教授
2017-2018 加州大学伯克利分校 生物信息与大数据,访问学者,合作导师:Devin Coleman-Derr

工作履历

2025-至今              教授,湖南大学隆平农学院
2019-2025             教授,湖南大学生物学院
2017-2018             研究员,湖南大学生物学院
2013-2017             副教授,湖南大学生物学院
2025.03-至今         湖南大学隆平农学院执行院长
2024.11-2025.03   湖南大学党委教师工作部部长(兼)
2022.01-2025.03   湖南大学人力资源处处长兼人才工程办公室主任
2021.11-2022.01   湖南大学人力资源处副处长兼人才工程办公室副主任(主持工作)
2019.12-2020.12   湖南大学发展规划办公室(重点建设办公室)副主任(挂职)
2019.04-2021.11   湖南大学生物学院副院长
2018.04-2019.03   湖南大学生物学院院长助理
2016.04-2018.03   湖南大学生物学院生命科学支部书记

学术兼职
为Nature Plants, Cell Research, Molecular Plant, PLOS Biology, Plant J 等杂志审稿人;现为《中国生物化学与分子生物学报》、《植物生理学报》、《生命科学研究》、《热带生物学报》杂志编委;中国遗传学会青年委员会委员、中国细胞生物学学会植物器官发生委员会委员、湖南省遗传学会副理事长、湖南省植物学会理事(青年理事长)、中国植物蛋白质组学工作组理事。

研究领域

全球30余万种高等植物生长在高山、海洋、沼泽、沙漠等几乎所有的地方,光照、温度、水、空气和养分是植物生长发育不可或缺的环境因子。高等植物得以在全球各种复杂地理环境条件下生存,人们能够培育广适、高抗、高产农作物,均得益于植物对环境变化的适应性。因此“高等植物如何适应环境变化”是Science杂志公布的125个前沿性科学问题之一。类受体激酶(Receptor-like kinase,RLK)是植物感受内外环境信号以调控适应性的重要受体。RLK如何感受与传递信号是基础生物学的重要问题,该问题的解答,不仅可以解析植物适应环境的分子机制,还可以用于指导作物的广适、高抗、高产育种。

类受体激酶RLK是植物界最大的受体家族,拟南芥约有600个成员,水稻约有1300个成员。自1990年植物界第一个RLK成员被鉴定,至今已有34年。RLK成员的研究已取得长足进展,但即使在拟南芥中,阐明配体信号和网络组成的RLK成员仍不足10%,距离全面理解植物适应环境的精细机制,重塑植物适应环境的过程,还相距甚远。目前如下关键科学问题仍亟待解答:植物为何需要RLK?RLK如何感受信号?不同RLK如何实现底物识别的特异性?RLK网络如何涌现以便协同调节植物的环境适应性和农艺性状?

聚焦以上科学问题,于峰2013年11月加入湖南大学后,组建“细胞适应性机制”(Basis of Cell Adapation)研究团队, 简称BCA,以水稻、拟南芥、番茄、烟草为研究对象,近5年在响应环境信号的重要受体RLK家族的新家族、新机制和新功能等方面均取得了系列研究成果,尤其是发现受体激酶FER在调控根部响应环境信号中“感知土壤环境信息,启动RLK网络,调控RNA代谢与根部发育”,是植物类受体激酶与根部可塑性领域的重要进展。

科研项目

主持科研项目

1.  国家自然科学基金面上项目, 32370757、受体激酶FER驱动根部穿透土壤的机制、2024/01-2027/01、50万元、在研、主持。

2.  国家重点研发子任务,2023YFD1401100、稻田新除草化合物的构效关系研究、2024/01-2027/01、300万元、在研、主持。

3.  省科技攻关项目,2023ZJ1080、水稻多组学大数据智能育种关键技术研究与验证、2024/01-2027/01、800万元、在研、主持。

4.   国家自然科学基金面上项目,32070769、受体激酶FER调控蛋白质合成的机制、2021/01-2024/12、58 万元、在研、主持。

5.   国家自然科学基金面上项目,31871396、一个核质穿梭蛋白在FERONIA信号网络中的功能、2019/01-2022/12、69 万元、在研、主持。

6.   国家自然科学基金面上项目,31571444、受体蛋白激酶FERONIA响应RALF多肽信号的机制、2016/01-2019/12、77.8万元、结题、主持。

7.   国家自然科学基金青年项目,31400232、磷酸酶ABI2在受体蛋白激酶FERONIA调控脱落酸与逆境响应中的分子机制研究、2015/01-2017/12、24万元、结题、主持。

8.  中国科协“青年人才托举计划”,YESS20160001, FERONIA信号网络在植物与微生物互作中的作用研究、2016/01-2018/12、45万、结题、主持。

9.  湖南省自然科学基金青年项目,2015JJ3048、受体蛋白激酶FERONIA在乙烯合成中的功能分析、2015/01-2017/12、5万元、结题、主持。

10.  湖南省优秀博士论文项目,受体蛋白激酶FERONIA在RALF与ABA交叉会话中的作用、2015/01-2016/12、2万元、结题、主持。

11. 湖南大学教改项目,基于《微生物与人类健康》的MOOC教学研究、2015/01-2017/12、0.5万元、结题、主持。

 

授权专利

1.  一种烟草NbFER基因及其在烟草种植中的作用。 于峰、徐国云、汪龙,201510399271.3

2.  一种水稻OsFLRs基因及其应用。汪龙、林亲录、于峰、杨涛、李驰宇、刘选明,201610914213.4

3.  根结线虫RALF蛋白质、编码基因及其应用。于峰、张鑫、廖红东、彭焕、彭德良,201911333833.9

4.  一种基因FERONIA的应用。宋丽梅、于峰、李婷婷,202010135008.4

5.  激酶抑制剂Reversine在提高植物青枯病抗性的应用。于峰、刘红斌、汪龙、伍斗生、李晓旭,202110131369.6

6.  激酶抑制剂LavendustinA在提高植物青枯病抗性的应用。汪龙、于峰、刘红斌、伍斗生、李晓旭,202110131381 .7

 
代表性学术报告

2021年4月   植物受体激酶FER介导的细胞活动与环境适应性;2021年全国细胞生物学会年会

2021年1月   受体激酶FERONIA调控的RNA代谢;第二届全国核糖核酸(RNA)青年学术会议

2018年5月  植物受体激酶FERONIA的“生”与“死”;2018年全国逆境生物学大会,开封

2017年11月 受体激酶FERONIA的“生”与“死”;长江中游四省遗传学会,张家界

2017年10月 受体激酶FERONIA在植物细胞活动及环境适应中的作用; 2017年全国植物生物学大会,重庆

2017年5月  FERONIA Receptor Kinase at the Crossroad of Hormone Signaling and Stress Responses;Plant Receptor-Like Kinase Symposium 2017,Lanzho

学术成果

以第一或通讯作者身份发表论文 (共同第一作者标“#”,通讯作者标“*”)

64. Zhang L#, Zhao J#, Kong L, Huang, W, Peng H, Peng D, Yu F*, Liu S*. (2025) The t-SNARE domain-containing soybean cyst nematode HgSNARE1 is an effector that interacts with the GmSNAP18-GmSHMT08-GmPR1-15 module and shows avirulence to soybean. Pest management science. Advance online publication

63. Shen Y#, Xie Q#, Wang T#, Wang X, Xu F, Yan Z, Li X, Ouyang S, Chen J, Wang Y, Zhou W*, Yu F*. (2025) RALF33-FERONIA signaling orchestrates post wounding root-tip regeneration via TPR4-ERF115 dynamics. The Plant cell. 37: koaf098

62. Luo X, Xing J, Peng Z, Zhang M, Wei Z, Xu J, Yu F*, Deng H*. (2025) Phosphorylation of CPR5 by the receptor-like kinase FLR2 promotes mRNA poly(A) tail processing and immunity to Magnaporthe oryzae in rice. Plant communications. 6: 101347

61. Wang B#, Luo C, Li X, Jimenez A, Cai J, Chen J, Li C, Zhang C, Ou L, Pu W, Peng Y, Zhang Z, Cai Y, Valls M, Wu D*, Yu F*. (2024) The FERONIA–RESPONSIVE TO DESSICATION 26 module regulates vascular immunity to Ralstonia solanacearum. The Plant Cell. 37: koae302

 60. Chen J #, Xu F #, Qiang X, Liu H, Wang L, Jiang L, Li C, Wang B, Luan S, Wu D, Zhou F, Yu F*. (2024) Regulated cleavage and translocation of FERONIA control immunity in Arabidopsis roots. Nature Plants. 10: 1761-1774

 59. Jiang L#, Xiao W#, Chen H, Qi Y, Kuang X, Shi J, Liu Z, Cao J, Lin Q, Yu F*, Wang L*. (2024) The OsGAPC1-OsSGL module negatively regulates salt tolerance by mediating abscisic acid biosynthesis in rice. New Phytologist. 244: 825-839

 58. Chen J, Yu F*, Xu F* (2024) Not just signals: RALFs as cell wall-structuring peptides. Trends in Plant Science. 29:727-729

 57. Liu Q#, Fu Q#, Yan Y, Jiang Q, Mao L, Wang L, Yu F*, Zheng H* (2024) Curation, nomenclature, and topological classification of Receptor-like kinases from 528 plant species for novel domain discovery and functional inference. Molecular Plant. 17: 658-671

 56. Fu Q#, Liu Q#, Zhang R, Chen J, Guo H, Ming Z*, Yu F*, Zheng H* (2024) Large-scale analysis of the N-terminal regulatory elements of the kinase domain in plant receptor-like kinase family. BMC Plant Biology. 24: 174

 55. Xu F#, Wang L#, Li Y, Shi J, Staiger D, Yu F* (2024) Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience. Molecular Plant. 17: 460-477

 54. Xu F#, Chen J#, Li Y, Ouyang S, Yu M, Wang Y, Fang X, He K, Yu F* (2024) The soil emergence-related transcription factor PIF3 controls root penetration by interacting with the receptor kinase FER. Developmental Cell. 59:434-447.e8.

 53. Liu H, Sun H, Du L, Jiang L, Zhang L, Qi Y, Cai J, Yu F* (2024) Rice receptor kinase FLR7 regulates rhizosphere oxygen levels and enriches the dominant Anaeromyxobacter that improves submergence tolerance in rice. The ISME Journal. 18: wrae006.

 52. Zhu S, Li Y, Wu Y, Shen Y, Wang Y, Yan Y, Chen W, Fu Q, Wang Y, Yu X, Yu F* (2023) The FERONIA-YUELAO module participates in translational control by modulating the abundance of tRNA fragments in Arabidopsis. Developmental Cell. 58: 2930-2946.e9.

 51. Xu F, Yu F* (2023) Sensing and regulation of plant extracellular pH. Trends in Plant Science 28: 1422-1437

 50. Li Y#, Gao J#, Wang Y, Cai J, Wu D, Wang L, Pu W*, Yu F*, Zhu S* (2023) The functions of a 5' tRNA-Ala-derived fragment in gene expression. Plant Physiology 193: 1126-1141.
 Highlighted by Cao D (2023) Stress-induced tRNA fragments take action in alternative splicing in Arabidopsis. Plant Physiology 193: 877-879.

49. Zhao K#, Wang L#, Qiu D#, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F*, Yin D* (2023) PSW1, an LRR receptor kinase, regulates pod size in peanut. Plant Biotechnology Journal 21: 2113-2124.

48. Cai J, Jiang Y, Ritchie ES, Macho AP*, Yu F*, Wu D* (2023) Manipulation of plant metabolism by pathogen effectors: more than just food. FEMS Microbiology Reviews. 47: 1-16.

47. Kong Y#, Chen J#, Jiang L, Chen H, Shen Y, Wang L, Yan Y, Zhou H, Zheng H, Yu F*, Ming Z* (2023) Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation. Plant Communications. 4:100559.

46. Pacheco JM#, Song L#, Kuběnová L, Ovečka M, Berdion Gabarain V, Peralta JM, Lehuedé TU, Ibeas MA, Ricardi MM, Zhu S, Shen Y, Schepetilnikov M, Ryabova LA, Alvarez JM, Gutierrez RA, Grossmann G, Šamaj J, Yu F*, Estevez JM* (2023) Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. New Phytologist. 238:169-185.

45. Wang L#, Xu F#, Yu F* (2023) Two environmental signal-driven RNA metabolic processes: alternative splicing and translation. Plant, Cell and Environment 46: 718-732.

44. Sui J#, Xiao X#, Yang J, Fan Y, Zhu S, Zhu J, Zhou B, Yu F*, Tang C* (2023) The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. Plant Science 326: 111510.

43. Chen W#, Zhou H#, Xu F, Yu M, Coego A, Rodriguez L, Lu Y, Xie Q, Fu Q, Chen J, Xu G, Wu D, Li X, Li X; Jaillais Y, Rodriguez PL, Zhu S, Yu F* (2023) CAR modulates plasma membrane nano-organization and immune signaling downstream of RALF1-FERONIA signaling pathway. New Phytologist 237: 2148-2162.

42. Liu HB#, Li X#, Cai J, Jiang LL, Zhang X, Wu D, Wang L, Yang A, Guo C, Chen J*, Pu W*, Yu F* (2023) A screening of inhibitors targeting the receptor kinase FERONIA reveals small molecules that enhance plant root immunity. Plant Biotechnology Journal 21: 63-77.

41. 李迎宾,于峰* (2022) 揭开“植物细胞感知胞外酸碱性”之谜. 科学通报 67: 4039-4040.

40. Wang B#, Wang S#, Tang Y, Jiang L, He W, Lin Q, Yu F*, Wang L* (2022)
Transcriptome-wide characterization of seed aging in rice: identification of specific long-lived mRNAs for seed longevity. Frontiers in Plant Science 13: 857390.

39. Li C#, Chen J#, Li X, Zhang X, Liu Y, Zhu S, Wang L, Zheng H, Luan S, Li J, Yu F* (2022) FERONIA is involved in phototropin 1-mediated blue light phototropic growth in Arabidopsis. Journal of Integrative Plant Biology 64: 1901-1915. Cover Story

38. Chen W#, Hu Z#, Yu M, Zhu S, Xing J, Song L, Pu W*, Yu F* (2022) A molecular link between autophagy and circadian rhythm in plants. Journal of Integrative Plant Biology 64: 1044-1058.

37. Liu Z#, Jiang S#, Jiang L, Li W, Tang Y, He W, Wang M, Xing J, Cui Y, Lin Q*, Yu F*, Wang L* (2022) Transcription factor OsSGL is a regulator of starch synthesis and grain quality in rice. Journal of Experimental Botany 73: 3417-3430.

36. Song L#, Xu G#, Li T#, Zhou H, Lin Q, Chen J, Wang L, Wu D, Li X, Wang L, Zhu S*, Yu F* (2022) The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. Molecular Plant 15: 1120-1136. Cover Story
Highlighted by Pacheco JM, Estevez JM* (2022) Two titans finally meet each other under nitrogen deficiencies: FERONIA-TORC1 activation promotes plant growth.Molecular Plant 15: 1095-1097.

35. Tang J#, Wu D#, Li X, Wang L, Xu L, Zhang Y, Xu F, Liu H, Xie Q, Dai S, Coleman-Derr D, Zhu S, Yu F* (2022) Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation. The EMBO Journal 41: e109102.
FacultyOpinions/F1000 recommended
https://facultyopinions.com/prime/741682231

34. He W#, Wang L#, Lin Q*, Yu F* (2021) Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. Journal of Integrative Plant Biology 63: 1999-2019.

33. Wu D#, Wang L#, Zhang Y, Bai L*, Yu F* (2021) Emerging roles of pathogen-secreted host mimics in plant disease development. Trends in Parasitology 37: 1082-1095.

32. Zhu S, Fu Q, Xu F, Zheng H, Yu F* (2021) New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytologist 232: 1168-1183.

31. Li L#, Li B#, Zhu S, Wang L, Song L, Chen J, Ming Z, Liu X*, Li X*, Yu F* (2021) TMK4 receptor kinase negatively modulates ABA signaling by phosphorylating ABI2 and enhancing its activity. Journal of Integrative Plant Biology 63: 1161-1178.

30. Wang L#, Wang D#, Yang Z#, Jiang S, Qu J, He W, Liu Z, Xing J, Ma Y, Lin Q*, Yu F* (2021) Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China life Sciences 64: 294-310.

29. Chen H#, Kong Y#, Chen J, Li L, Li X, Yu F*, Ming Z* (2020) Crystal structure of the extracellular domain of the receptor-like kinase TMK3 from Arabidopsis thaliana. Acta Crystallographica Section F, Structural Biology Communications F76: 384-390.

28. Zhang X#, Peng H#, Zhu S#, Xing J, Li X, Zhu Z, Zheng J, Wang L, Wang B, Chen J, Ming Z, Yao K, Jian J, Luan S, Coleman-Derr D, Liao H*, Peng Y*, Peng D, Yu F* (2020b) Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Molecular Plant 13: 1434-1454.
Highlighted by Shi CL (2020) Hijacking plant receptor by nematode-derived peptide mimics. Molecular Plant 13: 1351.
FacultyOpinions/F1000 recommended
https://facultyopinions.com/prime/738635379

27. Zhang X#, Yang Z#, Wu D, Yu F* (2020a) RALF-FERONIA signaling: linking plant immune response with cell growth. Plant Communications 1: 100084.

26. Yu M#, Li R#, Cui Y, Chen W, Li B, Zhang X, Bu Y, Cao Y, Xing J, Jewaria PK, Li X, Bhalerao RP, Yu F*, Lin J* (2020) The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147: dev189902.

25. Wang L#, Yang T#, Wang B, Lin Q*, Zhu S, Li C, Ma Y, Tang J, Xing J, Li X, Liao H, Staiger D, Hu Z, Yu F* (2020) RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances 6: eaaz1622.

24. Chen J, Zhu S, Ming Z, Liu X*, Yu F* (2020) FERONIA cytoplasmic domain: node of varied signal outputs. aBIOTECH 1: 135-146.

23. Zhu S#, Martínez Pacheco J#, Estevez JM*, Yu F*. (2020) Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytologist 227: 45-49.

22. Zhu S#, Estévez JM#, Liao H, Zhu Y, Yang T, Li C, Wang Y, Li L, Liu X, Pacheco JM, Guo H, Yu F* (2020) The RALF1-FERONIA complex phosphorylates eIF4E1 to promote protein synthesis and polar root hair growth. Molecular Plant 13: 698-716. Cover story
Highlighted by Guichard M, Grossmann G* (2020) On-site manufacturing in tip-growing cells through RALF1-FERONIA-mediated local mRNA translation. Molecular Plant 13: 682-684.

21. Wang L#, Yang T#, Lin Q*, Wang B, Li X, Luan S, Yu F* (2020) Receptor kinase FERONIA regulates flowering time in Arabidopsis. BMC Plant Biology 20: 26.

20. Yang Z#, Xing J#*, Wang L#, Liu Y, Qu J, Tan Y, Fu X, Lin Q, Deng H*, Yu F*. (2020) Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. Journal of Experimental Botany 71: 2112-2126.

19. Xu G#, Chen W#, Song L, Chen Q, Zhang H, Liao H, Zhao G, Lin F, Zhou H*, Yu F*. (2019) FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. Journal of Experimental Botany 70: 6375-6388.

18. 强晓楠,李鑫,陈佳,廖红东,于峰* (2019) 拟南芥RALF多肽家族的功能多样性初步分析。生物技术通报 35: 2-10. 封面论文

17. 于峰 (2019) 类受体激酶——植物环境适应性的调节枢纽. 生物技术通报 35: 1.

16.Li C#, Liu X#, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F* (2018) EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLOS Biology 16: e2006340. Weekly cover story
Highlighted by Stegmann M (2018) EBP1: A crucial growth regulator downstream of receptor kinases across kingdoms. PLOS Biology 16: e3000056.

15. Lu C#, Yu F#, Tian L#, Huang X, Tan H, Xie Z, Hao X, Li D*, Luan S*, Chen L* (2017) RPS9M, a mitochondrial ribosomal protein, is essential for central cell maturation and endosperm development in Arabidopsis. Frontiers in Plant Science 8: 2171.

14. Liao H, Tang R, Zhang X, Luan S*, Yu F* (2017) FERONIA receptor kinase at the crossroads of hormone signaling and stress responses. Plant and Cell Physiology 58: 1143-1150.

13. Yu F (2016) Molecular mechanism of cross-talk between abscisic acid and RALF peptide in Arabidopsis. Science Foundation in China 24: 50.

12.Li C#, Wang L#, Cui Y, He L, Qi Y, Zhang J, Lin J, Liao H, Lin Q, Yang T, Yu F*, Liu X* (2016) Two FERONIA-like receptor (FLR) genes are required to maintain architecture, fertility, and seed yield in rice. Molecular Breeding 36: 151.

11. Du C#, Li X#, Chen J#, Chen W, Li B, Li C, Wang L, Li J, Zhao X, Lin J, Liu X*, Luan S*, Yu F* (2016) Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113: E8326-E8334. ESI highly cited paper

10. Yu F, Luan S* (2016) Peptide signaling in plants: finding partners is the key. Cell Research 26: 755-756.

9. Yu D#, Li X#, Zhao X#, Du C, Chen J, Li C, Sun M, Wang L, Lin J, Tang D, Yu F*, Liu X* (2016) RPN1a negatively regulates ABA signaling in Arabidopsis. Plant Physiology and Biochemistry 108: 279-285.

8. Chen J#, Yu F#*, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S* (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113: E5519-E5527. ESI highly cited paper

7. Yang T#, Wang L#, Li C, Liu Y, Zhu S, Qi Y, Liu X, Lin Q*, Luan S, Yu F* (2015) Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications 465: 77-82.

6. Mao D#, Yu F#*, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L*, Li D, Luan S* (2015) FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant, Cell and Environment 38: 2566-2574. ESI highly cited paper

5. Yu D#, Yu F#, Du C, Li X, Zhao X*, Liu X* (2015) RPN1a, a subunit of the 26S proteasome, controls trichome development in Arabidopsis. Plant Physiology and Biochemistry 88: 82-88.

4. Yu F#, Tian W#, Luan S* (2014b) From receptor-like kinases to calcium spikes: what are the missing links? Molecular Plant 7: 1501-1504.

3. Yu F, Li J, Huang Y, Liu L, Li D*, Chen L*, Luan S* (2014a) FERONIA receptor kinase controls seed size in Arabidopsis thaliana. Molecular Plant 7: 920-922. ESI highly cited paper

2. Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB*, Chen L*, Cheung AY, Li D*, Luan S* (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proceedings of the National Academy of Sciences of the United States of America 109: 14693-14698.

1. Yu F#, Shi J#, Zhou J#, Gu J, Chen Q, Li J, Cheng W, Mao D, Tian L, Buchanan BB*, Li L, Chen L, Li D*, Luan S* (2010) ANK6, a mitochondrial ankyrin repeat protein, is required for male-female gamete recognition in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107: 22332-22337.

合作发表论文

7. Rui P, Jia Z, Fang X, Yu T, Mao W, Lin J, Zheng H, Lu Y, Yu F, Chen J*, Yan F*, Wu G*. (2025) A plant viral effector subverts FER-RALF1 module-mediated intracellular immunity. Plant biotechnology journal. Advance online publication.

6.  Liu X#, Cai J#, Li X, Yu F, Wu D* (2022) Can bacterial type III effectors mediate pathogen-plant-microbiota ternary interactions? Plant, Cell and Environment 45: 5-11.

5.  Zhang X#, Wang D#, Chen J, Wu D*, Feng X*, Yu F (2021) Nematode RALF-like 1 targets soybean malectin-like receptor kinase to facilitate parasitism. Frontiers in Plant Science 12: 775508.  

4.  Lu C#, Xie Z#, Yu F, Tian L, Hao X, Wang X, Chen L*, Li D* (2020) Mitochondrial ribosomal protein S9M is involved in male gametogenesis and seed development in Arabidopsis. Plant Biology 22: 655-667.

3.  Zeng S, Liu D, Li C, Yu F, Fan L, Lei C*, Huang Y*, Nie Z*, Yao S (2018) Cell-surface-anchored ratiometric DNA tweezer for real-time monitoring of extracellular and apoplastic pH. Analytical Chemistry 90: 13459-13466.

2.  Zhou YB#, Liu C#, Tang DY#, Yan L#, Wang D, Yang YZ, Gui JS, Zhao XY, Li LG, Tang XD, Yu F, Li JL, Liu LL, Zhu YH, Lin JZ*, Liu XM* (2018) The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell 30: 1100-1118.

1.  Li Y#, Lin J#, Li L, Peng Y, Wang W, Zhou Y, Tang D, Zhao X, Yu F, Liu X* (2016) DHHC-cysteine-rich domain S-acyltransferase protein family in rice: organization, phylogenetic relationship and expression pattern during development and stress. Plant Systematics and Evolution 302: 1405-1417.

奖励与荣耀

2024  湖南省自然科学一等奖(序1)
2021  卫志明青年创新奖
2021  高等学校科学研究优秀成果奖(科学技术) 二等奖 (排名第二)
2017  湖南大学“优秀教师”
2017  湖南大学“优秀共产党员”
2016  中国科协“青年人才托举计划”
2015  湖南省优秀博士论文
2013  湖南省优秀毕业生
2013  首届研究生国家奖学金 (博士)
2012  湖南省芙蓉学子-学术科研奖